Shrinkage estimation and variable selection in multiple regression models with random coefficient autoregressive errors

نویسندگان

  • Saber Fallahpour
  • S. Ejaz Ahmed
چکیده

In this paper, we consider improved estimation strategies for the parameter vector in multiple regression models with first-order random coefficient autoregressive errors (RCAR(1)). We propose a shrinkage estimation strategy and implement variable selection methods such as lasso and adaptive lasso strategies. The simulation results reveal that the shrinkage estimators perform better than both lasso and adaptive lasso when and only when there are many nuisance variables in the model. © 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression Coefficient and Autoregressive Order Shrinkage and Selection via Lasso

The least absolute shrinkage and selection operator (lasso) has been widely used in regression shrinkage and selection. In this article, we extend its application to the REGression model with AutoRegressive errors (REGAR). Two types of lasso estimators are carefully studied. The first is similar to the traditional lasso estimator with only two tuning parameters (one for regression coefficients ...

متن کامل

Frontiers in Time Series and Financial Econometrics: An Overview

Two of the fastest growing frontiers in econometrics and quantitative finance are time series and financial econometrics. Significant theoretical contributions to financial econometrics have been made by experts in statistics, econometrics, mathematics, and time series analysis. The purpose of this special issue of the journal on “Frontiers in Time Series and Financial Econometrics” is to highl...

متن کامل

Variable Selection in Nonparametric and Semiparametric Regression Models

This chapter reviews the literature on variable selection in nonparametric and semiparametric regression models via shrinkage. We highlight recent developments on simultaneous variable selection and estimation through the methods of least absolute shrinkage and selection operator (Lasso), smoothly clipped absolute deviation (SCAD) or their variants, but restrict our attention to nonparametric a...

متن کامل

The Florida State University College of Arts and Sciences Theories on Group Variable Selection in Multivariate Regression Models

We study group variable selection on multivariate regression model. Group variable selection is selecting the non-zero rows of coefficient matrix, since there are multiple response variables and thus if one predictor is irrelevant to estimation then the corresponding row must be zero. In a high dimensional setup, shrinkage estimation methods are applicable and guarantee smaller MSE than OLS acc...

متن کامل

Positive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications

Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015